Dynamic updating about menus

Kim Sarnoff

March 20, 2024

Introduction

- ▶ Inference about ability is a key input into many economic decisions, e.g. hiring.
- ▶ Typically assume evaluators (e.g. employers) act as sophisticated statisticians.
- But, environment complex:
 - Information arrives sequentially
 - ► About a menu of individuals
 - With different prior distributions of ability.

Introduction

- ▶ Inference about ability is a key input into many economic decisions, e.g. hiring.
- ▶ Typically assume evaluators (e.g. employers) act as sophisticated statisticians.
- But, environment complex:
 - Information arrives sequentially
 - About a menu of individuals
 - ► With different prior distributions of ability.
- Goal: Study dynamic belief formation about individuals who are evaluated with others.

Introduction

- ▶ Use lab experiment to study how evaluators update based on incremental information
 - ▶ How features of distribution from which evaluatee sampled affect learning.
 - ▶ How comparison between individuals affects learning, depending on their respective groups.

Outline

Design

Econometric strategy

Aggregate analysis

Sequence effects

Outline

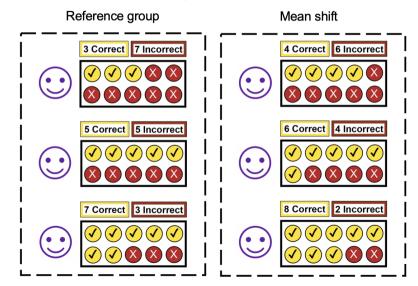
Design

Econometric strategy

Aggregate analysis

Sequence effects

Overview of design


- Experimental "employers" complete a statistical learning task.
 - Create groups of experimental "workers" with varying ability.
 - Worker drawn from a given ability distribution.
 - ▶ Employer receives information on worker ability incrementally and reports beliefs.
- ▶ Vary environment in which learning task done.
 - Single worker in isolation.
 - Pairs drawn from same distribution evaluated simultaneously.
 - Pairs drawn from different distributions evaluated simultaneously.

Workers and their task

- ▶ Hired 160 people ("workers") on Prolific to complete a set of questions from the ASVAB.
 - ► Test used by US military to assess cognitive skills.
 - ► Split into three quizzes: science, math, verbal. ► Examples
- ► Each worker got score out of 10 on math quiz. This is "ability" parameter employers subsequently make inferences about.

Worker groups for employer treatments

From pool of workers, construct two groups, each with different distribution of scores.

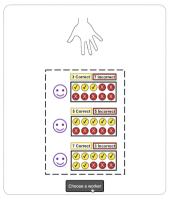
- ► Worker drawn at random from group.
- Employer's task is to guess probability drawn worker got each score in group.

- Worker drawn at random from group.
- Employer's task is to guess probability drawn worker got each score in group.
- ▶ Prior: Employer given accurate prior for scores in worker's group, P(score).

- Worker drawn at random from group.
- ► Employer's task is to guess probability drawn worker got each score in group.
- ▶ Prior: Employer given accurate prior for scores in worker's group, P(score).
- ► Signals: Question drawn at random, with replacement, from worker's quiz:

$$P(y|score) = egin{cases} score/10 & \textit{if } y = \textit{correct} \\ 1 - \textit{score}/10 & \textit{if } y = \textit{incorrect} \end{cases}$$

- Worker drawn at random from group.
- Employer's task is to guess probability drawn worker got each score in group.
- ▶ Prior: Employer given accurate prior for scores in worker's group, P(score).
- ► Signals: Question drawn at random, with replacement, from worker's quiz:


$$P(y|score) = egin{cases} score/10 & if y = correct \ 1 - score/10 & if y = incorrect \end{cases}$$

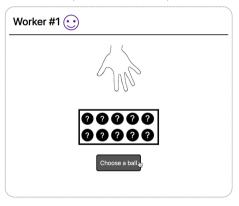
Bayesian benchmark: Calculate posterior distribution of score according to:

$$P(score|y) = \frac{P(y|score)P(score)}{\sum_{score} P(y|score)P(score)}$$

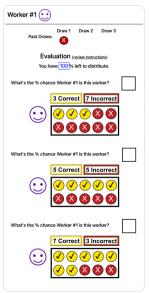
Individual treatment (Individual)

- ▶ Step 1: Employer randomized to one of two groups and views group. Gives accurate prior.
- ▶ Step 2: Single worker drawn with replacement from the group.

Individual treatment (Individual)


- ▶ Step 1: Employer randomized to one of two groups and views group. Gives accurate prior.
- ▶ Step 2: Single worker drawn with replacement from the group.

▶ Step 3: Complete 3 identical rounds about worker.

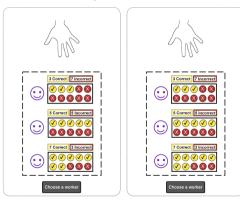

Part 1 of Round: View signal

▶ View whether question drawn with replacement from quiz answered correctly or incorrectly:

Part 2 of Round: Posterior

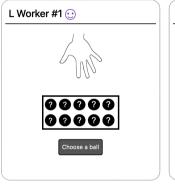
▶ Report full posterior distribution of worker's score:

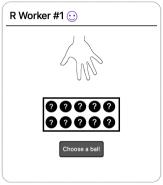
Sequence and payment


▶ 24 rounds overall: 3 rounds each for 8 workers.

Sequence and payment

- ▶ 24 rounds overall: 3 rounds each for 8 workers.
- ▶ Pay for half of the rounds, chosen randomly.
- Beliefs incentivized with binarized scoring rule.


Two workers from same group (Same)


- ▶ Step 1: Randomized to a group and view group.
- ▶ Step 2: Draw two workers, each with replacement.

Two workers from same group (Same)

▶ Step 3: Complete rounds simultaneously for both workers in pair via split interface.

- ▶ 12 rounds overall: 3 rounds for 4 worker pairs.
- Pay for one worker each round, chosen randomly.

Two workers from different groups (Different)

- ► Step 1: View both groups.
- ▶ Step 2: Draw one worker with replacement from each group.
- ▶ Step 3: Complete rounds simultaneously for both workers in pair via split interface.
- ▶ 12 rounds overall: 3 rounds for 4 worker pairs.
- Pay for one worker each round, chosen randomly.

Signals

➤ Signal sequences are (using 1 to indicate signal = correct question, 0 for signal = incorrect question):

	Individual		Same	Group		Different Groups		
	Group G		Group G	Group G		Group G	Group G'	
Worker 1	0,0,1	Pair 1	0,0,1	0,1,1	Pair 1	0,0,1	0,1,1	
Worker 2	0,1,1	Pair 2	0,1,1	1,0,0	Pair 2	0,1,1	1,0,0	
Worker 3	0,0,0	Pair 3	0,0,0	1,1,1	Pair 3	0,0,0	1,1,1	
Worker 4	1,1,0	Pair 4	1,1,0	0,0,1	Pair 4	1,1,0	0,0,1	
						Group G	Group G'	
Worker 5	0,1,1				Pair 1	0,1,1	0,0,1	
Worker 6	1,0,0				Pair 2	1,0,0	0,1,1	
Worker 7	1,1,1				Pair 3	1,1,1	0,0,0	
Worker 8	0,0,1				Pair 4	0,0,1	1,1,0	

Sample

- ► Total sample is 180
 - ▶ 30 participants for each group in individual treatment.
 - ▶ 30 participants for each group in same group treatment.
 - ▶ 60 participants for different groups treatment.
- Estimation sample is 150
 - Drop participants who make mistakes in more than half the rounds.

Outline

Design

Econometric strategy

Aggregate analysi

Sequence effects

Econometric strategy

- Evaluator i reports belief about worker w in time t
- For a given worker, t goes from 1 to 3
- Normally, estimate log-linear form of Bayes rule

```
log posterior odds
log\left(\frac{P(score_{j}|signal)_{i,w,t}}{P(score_{t}|signal)_{i,w,t}}\right) =
                                                                                               LLR if signal in t correct
                                       \beta_C * 1[s_t = correct] * log \left( \frac{P(correct|score_j)_{i,w,t}}{P(correct|score_k)_{i,w,t}} \right)
                                                                                                 LLR if signal in t incorrect
                                  + \beta_{I} * 1[s_{t} = incorrect] * log \left( \frac{P(incorrect|score_{j})_{i,w,t}}{P(incorrect|score_{k})_{i,w,t}} \right)
                                                                                                                                      log prior odds
                                                                                                           +\delta * log \left( \frac{P(score_j)_{i,w,t-1}}{P(score_i)} \right) + \epsilon_{i,w,t}
```

Econometric strategy

► Suppose true model is each *i* has fixed weights on prior & data:

$$\begin{split} log\left(\frac{P(score_{j}|signal)_{i,w,t}}{P(score_{k}|signal)_{i,w,t}}\right) = \\ & \beta_{Ci}*1[s_{t} = correct]*log\left(\frac{P(correct|score_{j})_{i,w,t}}{P(correct|score_{k})_{i,w,t}}\right) \\ & + \beta_{Ii}*1[s_{t} = incorrect]*log\left(\frac{P(incorrect|score_{j})_{i,w,t}}{P(incorrect|score_{k})_{i,w,t}}\right) \\ & + \delta_{i}*log\left(\frac{P(score_{j})_{i,w,t-1}}{P(score_{k})_{i,w,t-1}}\right) + \epsilon_{i,w,t} \end{split}$$

- ▶ If run population regression, $\epsilon_{i,w,t}$ contains δ_i , β_{Ci} , $\beta_{Ii} \implies E[\epsilon_{i,w,t}|\mathbf{X}] \neq 0$
- ► Instrumenting with Bayesian prior not a solution ▶ Detail

Simulated maximum likelihood

$$y_{it} = \begin{cases} \beta_{Ci} 1[s_t = correct] s_{it} + \beta_{li} 1[s_t = incorrect] s_{it} + \epsilon_{it} & \text{if } t = 1\\ \beta_{Ci} 1[s_t = correct] s_{it} + \beta_{li} 1[s_t = incorrect] s_{it} + \delta_i y_{i,t-1} + \epsilon_{it} & \text{if } t > 1 \end{cases}$$

Simulated maximum likelihood

$$y_{it} = \begin{cases} \beta_{Ci} 1[s_t = correct] s_{it} + \beta_{Ii} 1[s_t = incorrect] s_{it} + \epsilon_{it} & \text{if } t = 1\\ \beta_{Ci} 1[s_t = correct] s_{it} + \beta_{Ii} 1[s_t = incorrect] s_{it} + \delta_i y_{i,t-1} + \epsilon_{it} & \text{if } t > 1 \end{cases}$$

$$\begin{pmatrix} \beta_{\textit{C}i} \\ \beta_{\textit{I}i} \\ \delta_{\textit{i}} \end{pmatrix} \sim \text{MVN} \left(\begin{pmatrix} \mu_{\beta_{\textit{C}i}} \\ \mu_{\beta_{\textit{I}i}} \\ \mu_{\delta_{\textit{i}}} \end{pmatrix}, \begin{pmatrix} \sigma_{\beta_{\textit{C}i}}^2 & \sigma_{\beta_{\textit{C}i}\beta_{\textit{I}i}} & \sigma_{\beta_{\textit{C}i}\delta_{\textit{i}}} \\ \sigma_{\beta_{\textit{I}i}} & \sigma_{\beta_{\textit{I}i}}^2 & \sigma_{\beta_{\textit{I}i}\delta_{\textit{i}}} \\ \sigma_{\delta_{\textit{i}}\beta_{\textit{C}i}} & \sigma_{\delta_{\textit{i}}\beta_{\textit{I}i}} & \sigma_{\delta_{\textit{i}}}^2 \end{pmatrix} \right)$$

$$\epsilon_{it} \sim_{iid} N(0, \sigma^2)$$

► Log likelihood of an observation is:

$$\mathcal{L}_{it} = \ln(\phi \left[y_{it} - \theta_i x_{it} \right])$$

where
$$\theta_i = [\beta_{Ci}, \beta_{Ii}, \delta_i]$$
, $x_{it} = [s_{it}, y_{i,t-1}(\theta_i)]'$

► Log likelihood of an observation is:

$$\mathcal{L}_{it} = \ln(\phi \left[y_{it} - \theta_i x_{it} \right])$$

where
$$\theta_i = [\beta_{Ci}, \beta_{li}, \delta_i], x_{it} = [s_{it}, y_{i,t-1}(\theta_i)]'$$

ightharpoonup Don't observe $\theta_i \implies$ can't do maximum likelihood directly. Need to integrate it out:

$$\mathcal{L}_{it} = \ln \left(\int \phi \left[y_{it} - heta_i x_{it}
ight] dF(heta_i)
ight)$$

► Log likelihood of an observation is:

$$\mathcal{L}_{it} = \ln(\phi \left[y_{it} - \theta_i x_{it} \right])$$

where $\theta_i = [\beta_{Ci}, \beta_{li}, \delta_i], x_{it} = [s_{it}, y_{i,t-1}(\theta_i)]'$

ightharpoonup Don't observe $\theta_i \implies$ can't do maximum likelihood directly. Need to integrate it out:

$$\mathcal{L}_{it} = \ln \left(\int \phi \left[y_{it} - heta_i x_{it} \right] dF(heta_i) \right)$$

Don't know this integral analytically, so simulate it:

$$\mathcal{L}_{it}^{sim} = \ln \left[\frac{1}{S} \sum_{s} \phi \left[y_{it} - \theta_{is} x_{it} \right] \right]$$

► Log likelihood of an observation is:

$$\mathcal{L}_{it} = \ln(\phi \left[y_{it} - \theta_i x_{it} \right])$$

where $\theta_i = [\beta_{Ci}, \beta_{li}, \delta_i], x_{it} = [s_{it}, y_{i,t-1}(\theta_i)]'$

ightharpoonup Don't observe $\theta_i \implies$ can't do maximum likelihood directly. Need to integrate it out:

$$\mathcal{L}_{it} = \ln \left(\int \phi \left[y_{it} - heta_i x_{it} \right] dF(heta_i) \right)$$

Don't know this integral analytically, so simulate it:

$$\mathcal{L}_{it}^{sim} = \ln \left[\frac{1}{S} \sum_{s} \phi \left[y_{it} - \theta_{is} x_{it} \right] \right]$$

Maximize the simulated likelihood: $\sum_{i} \sum_{t} \mathcal{L}_{it}^{sim}$

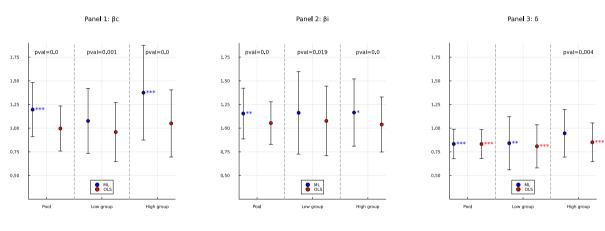
Outline

Design

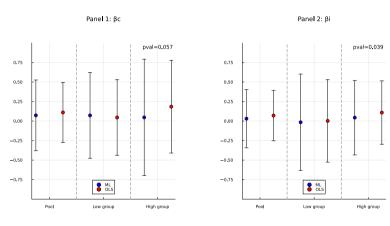
Econometric strategy

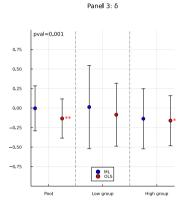
Aggregate analysis

Sequence effects

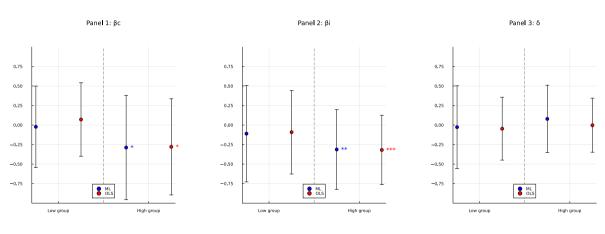

Baseline model

$$y_{it} = \begin{cases} \beta_{Ci} \mathbb{1}[s_t = correct] s_{it} + \beta_{li} \mathbb{1}[s_t = incorrect] s_{it} + \epsilon_{it} & \text{if } t = 1\\ \beta_{Ci} \mathbb{1}[s_t = correct] s_{it} + \beta_{li} \mathbb{1}[s_t = incorrect] s_{it} + \delta_i y_{i,t-1} + \epsilon_{it} & \text{if } t > 1 \end{cases}$$

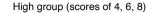

▶ Will show estimate of $\mu_{\beta_{Ci}}, \mu_{\beta_{Ii}}, \mu_{\delta_i}$

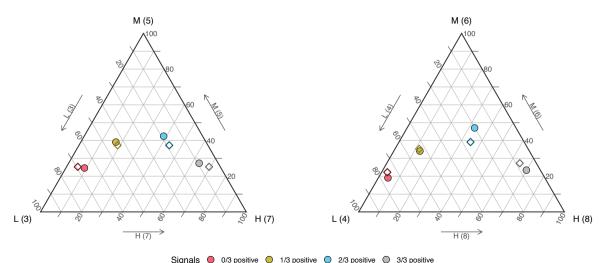

$$\begin{pmatrix} \beta_{\textit{Ci}} \\ \beta_{\textit{li}} \\ \delta_{\textit{i}} \end{pmatrix} \sim \mathsf{MVN} \begin{pmatrix} \mu_{\beta_{\textit{Ci}}} \\ \mu_{\beta_{\textit{li}}} \\ \mu_{\delta_{\textit{i}}} \end{pmatrix}, \begin{pmatrix} \sigma_{\beta_{\textit{Ci}}}^2 & \sigma_{\beta_{\textit{Ci}}\beta_{\textit{li}}} & \sigma_{\beta_{\textit{Ci}}\delta_{\textit{i}}} \\ \sigma_{\beta_{\textit{li}}} & \sigma_{\beta_{\textit{li}}} & \sigma_{\beta_{\textit{li}}\delta_{\textit{i}}} \\ \sigma_{\delta_{\textit{i}}\beta_{\textit{Ci}}} & \sigma_{\delta_{\textit{i}}\beta_{\textit{li}}} & \sigma_{\delta_{\textit{i}}}^2 \end{pmatrix} \end{pmatrix}$$

Individual treatment



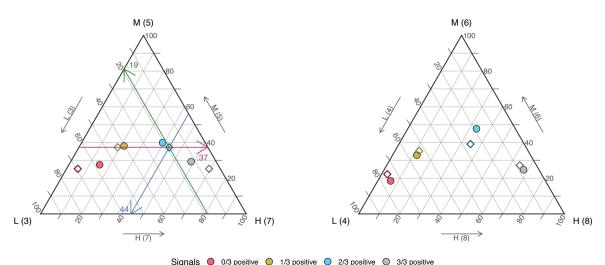
Effect of simultaneous evaluation



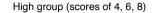

Effect of partner from different group

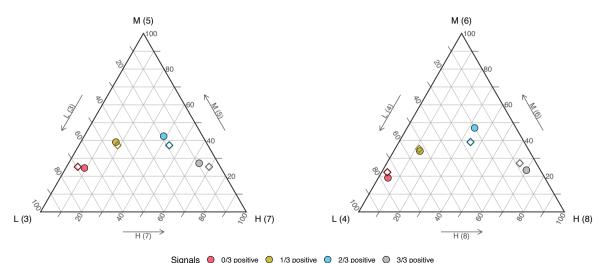
Final belief in *Individual* treatment

Low group (scores of 3, 5, 7)



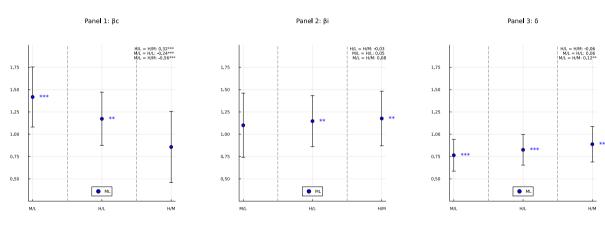
Final belief in *Individual* treatment


Medium ability group (scores of 3, 5, 7)

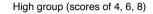


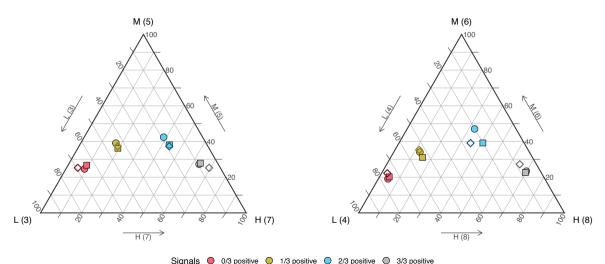
Final belief in *Individual* treatment

Low group (scores of 3, 5, 7)

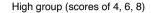


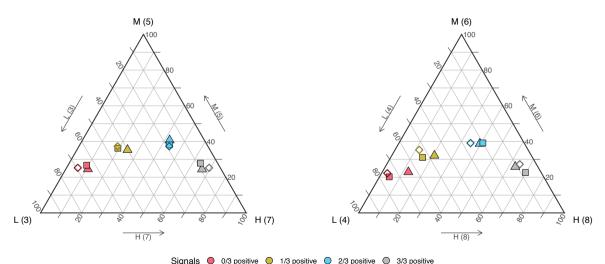
Model with state effects


$$y_{it} = \begin{cases} [\beta_{\mathit{Ci}} + \beta_{\mathit{C,state}}] 1[s_t = \mathit{cor}] s_{it} + [\beta_{\mathit{Ii}} + + \beta_{\mathit{I,state}}] 1[s_t = \mathit{inc}] s_{it} + \epsilon_{it} & \text{if } t = 1 \\ [\beta_{\mathit{Ci}} + \beta_{\mathit{C,state}}] 1[s_t = \mathit{cor}] s_{it} + [\beta_{\mathit{Ii}} + \beta_{\mathit{I,state}}] 1[s_t = \mathit{inc}] s_{it} + [\delta_{\mathit{i}} + \delta_{\mathit{state}}] y_{\mathit{i,t-1}} + \epsilon_{\mathit{it}} & \text{if } t > 1 \end{cases}$$

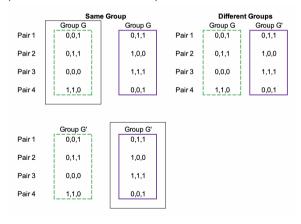

State specific effects in *Individual* treatment

Effect of simultaneous evaluation


Low group (scores of 3, 5, 7)

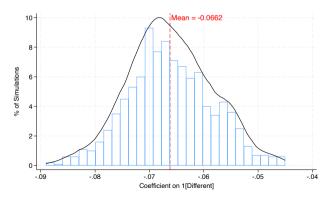


Effect of partner from different group


Low group (scores of 3, 5, 7)

Within pair distance in final belief

- Calculate within pair distance in final belief in Diff
- ► Compare to within pair distance in simulated pairs from Same



Partner from different group leads to compression within pair.

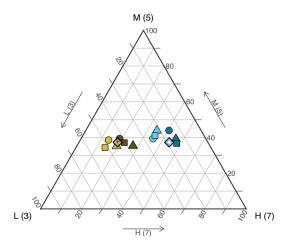
▶ Perform 1000 simulations, estimating

Distance within pair =
$$\beta_0 + \beta_1 1[Different] + \epsilon$$

SE clustered at individual level, where this is simulated individual in Same.

Outline

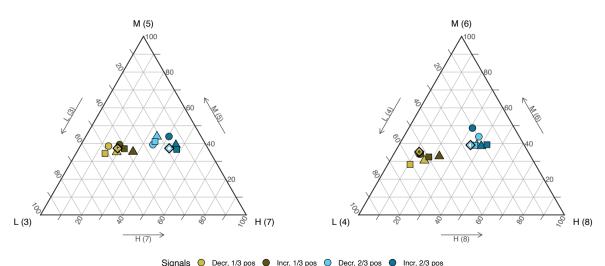
Design


Econometric strategy

Aggregate analysi

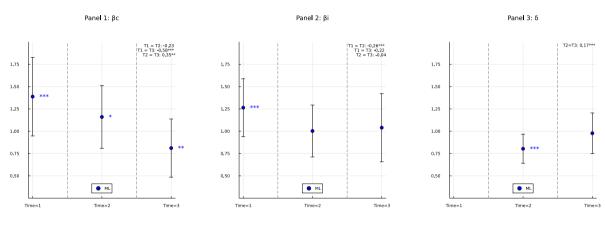
Sequence effects

Generally, beliefs higher after increasing sequence.


Low group (scores of 3, 5, 7)

Generally, beliefs higher after increasing sequence.

Low group (scores of 3, 5, 7)


High group (scores of 4, 6, 8)

Model with time effects

$$y_{it} = \begin{cases} [\beta_{Ci} + \beta_{Ct}] 1[s_t = correct] s_{it} + [\beta_{Ii} + + \beta_{It}] 1[s_t = incorrect] s_{it} + \epsilon_{it} & \text{if } t = 1 \\ [\beta_{Ci} + \beta_{Ct}] 1[s_t = correct] s_{it} + [\beta_{Ii} + \beta_{It}] 1[s_t = incorrect] s_{it} + [\delta_i + \delta_t] y_{i,t-1} + \epsilon_{it} & \text{if } t > 1 \end{cases}$$

Time specific effects in *Individual*

Conclusion

- Conduct lab experiment to study sequential updating, varying whether workers viewed in tandem or alone.
- Updating is time and state dependent.
- When pair comes from different groups, there is compression.
- Increasing sequences, for the most part, increase beliefs.

Appendix

Figures

Effect of Same treatment

Effect of *Different* treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

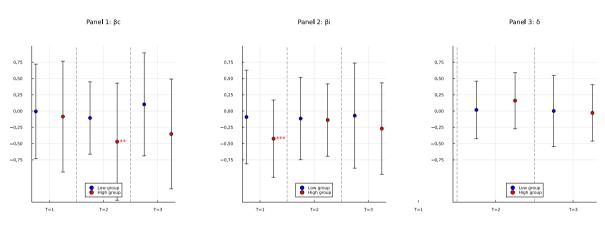
Other

Appendix

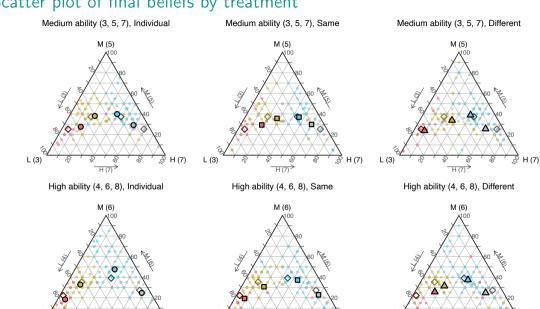
Figures

Effect of *Same* treatment

Effect of Different treatment

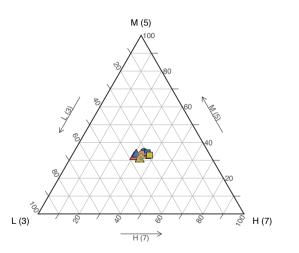

Effect of signal order

Endogeneity

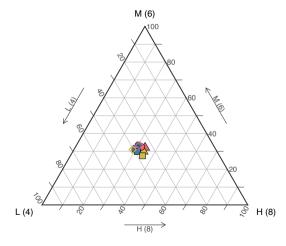

OLS estimates of log-linear updating rule

Othe

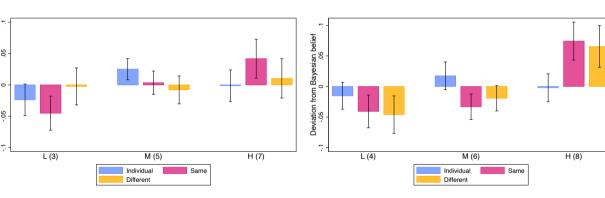
Effect of partner from different group, by time



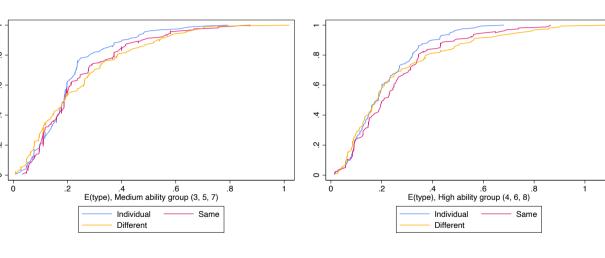
Scatter plot of final beliefs by treatment


Belief by signal draw

Medium ability group (scores of 3, 5, 7)



Draw 0 1 0 2 0 3


High ability group (scores of 4, 6, 8)

Distance from Bayesian belief in final round

CDF, Distance from Bayesian belief in final round

Appendix

Figures

Effect of Same treatment

Effect of *Different* treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Other

Effect of Same by group.

	(1)	(2)	(3)
	P(L)	P(M)	P(H)
Same	-0.021	-0.022	0.043
	(0.018)	(0.024)	(0.029)
High ability group (4, 6, 8)	0.015	-0.007	-0.013
	(0.016)	(0.019)	(0.021)
Same imes High ability group	-0.004	-0.029	0.033
	(0.026)	(0.034)	(0.040)
Constant	0.008	-0.010	0.054**
	(0.019)	(0.043)	(0.025)
Effect of $Same$ in high ability group $(Same + Same \times High)$	-0.026	-0.051**	0.076***
Control for Bayesian belief	√	√	√
Observations	640	640	640

Effect of Same by worker signals.

	(1)	(2)	(3)
	P(L)	P(M)	P(H)
2-3 positive signals	-0.060*	0.052***	-0.000
	(0.033)	(0.017)	(0.031)
Same	-0.036	-0.016	0.052*
	(0.033)	(0.018)	(0.031)
$Same \times 2-3 pos$	0.026	-0.040**	0.014
	(0.046)	(0.019)	(0.040)
Constant	0.081***	-0.023	0.053**
	(0.030)	(0.042)	(0.022)
Effect of Same for 2-3 pos signals $(Same + Same \times 2-3 pos)$	-0.010	-0.056***	0.067***
Control for Bayesian belief	√	√	√
Observations	640	640	640

Appendix

Figures

Effect of *Same* treatmen

Effect of *Different* treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Othe

Effect of *Different* by group and worker signals.

- \blacktriangleright Worker in g with sequence s, partner is worker in g' with s'
- ► Worker in g with sequence s, partner is worker in g with s'

	Medium ability (3, 5, 7)			High	High ability (4, 6, 8)		
	(1)	(2)	(3)	(4)	(5)	(6)	
	P(L)	P(M)	P(H)	P(L)	P(M)	P(H)	
Different	0.052	-0.028	-0.024	-0.065	0.021	0.043	
	(0.042)	(0.028)	(0.046)	(0.041)	(0.021)	(0.040)	
2-3 positive signals	0.008	0.010	-0.036	-0.157***	0.222**	0.079	
	(0.049)	(0.009)	(0.043)	(0.055)	(0.101)	(0.051)	
2-3 pos × <i>Different</i>	-0.018	0.032	-0.014	0.119 **	-0.015	-0.104*	
	(0.061)	(0.028)	(0.057)	(0.051)	(0.027)	(0.050)	
Constant	0.062	0.108*	0.104**	0.194***	1.101**	0.082**	
	(0.049)	(0.056)	(0.043)	(0.066)	(0.542)	(0.037)	
Control for Bayesian belief	√	√	√	√	√	√	

Appendix

Figures

Effect of *Same* treatmen

Effect of Different treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Othe

Order effect in *Individual* treatment by group.

	(1)	(2)	(3)
	P(L)	P(M)	P(H)
High ability (4, 6, 8)	-0.083**	0.027	0.036
	(0.032)	(0.027)	(0.034)
Increasing signals	-0.094***	0.038***	0.056**
	(0.030)	(0.012)	(0.025)
$High ability \times increasing$	0.120***	-0.020	-0.100**
	(0.038)	(0.025)	(0.039)
Constant	0.016	-1.143***	0.028
	(0.049)	(0.346)	(0.038)
Effect of incr signals in high ability group (Incr $+$ High \times incr)	0.026	0.018	-0.044
Control for Bayesian belief	√	√	√
Observations	240	240	240

Order effect in individual vs pair treatments by group.

	Mediu	Medium ability (3, 5, 7)			High ability (4, 6, 8)		
	(1)	(2)	(3)	(4)	(5)	(6)	
	P(L)	P(M)	P(H)	P(L)	P(M)	P(H)	
Increasing signals	-0.094***	0.038***	0.056**	0.026	0.018	-0.044	
	(0.030)	(0.012)	(0.025)	(0.023)	(0.022)	(0.030)	
Pair	-0.021	0.006	0.014	0.045*	-0.063***	0.018	
	(0.033)	(0.026)	(0.031)	(0.024)	(0.023)	(0.027)	
Increasing × Pair	0.023	-0.057***	0.034	-0.108***	-0.001	0.110**	
	(0.040)	(0.018)	(0.037)	(0.036)	(0.025)	(0.043)	
Effect of incr in $Pair$ (Incr + Incr \times $Pair$)	-0.071***	-0.020	0.090***	-0.082***	0.017	0.066**	
Control for Bayesian belief	√	√	√	√	√	√	
Observations	360	360	360	360	360	360	

Appendix

Figures

Effect of *Same* treatmen

Effect of Different treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Othe

Endogeneity

- Evaluator i reports belief about worker w in time t.
- For a given worker, t goes from 1 to 3.
- ► Suppose true model is each *i* has fixed weights on prior & data:

$$log\left(\frac{P(score_{j}|signal)_{i,w,t}}{P(score_{k}|signal)_{i,w,t}}\right) = \\ \beta_{Ci}*1[s_{t} = correct]*log\left(\frac{P(correct|score_{j})_{i,w,t}}{P(correct|score_{k})_{i,w,t}}\right) \\ \text{LLR if signal in } t \text{ incorrect} \\ + \beta_{li}*1[s_{t} = incorrect]*log\left(\frac{P(incorrect|score_{j})_{i,w,t}}{P(incorrect|score_{k})_{i,w,t}}\right) \\ \text{log prior odds}$$

▶ In round 1, log prior odds exogenously set to 0. In round 2 and 3, use lagged reported posterior.

 $+\delta_{i} * log \left(\frac{P(score_{i})_{i,w,t-1}}{P(score_{i})_{i,w,t}}\right) + \eta_{i,w,t}$

 ϵ is i.i.d mean zero noise.

Endogeneity

$$\log \left(\frac{P(score_{j}|signal)_{i,w,t}}{P(score_{k}|signal)_{i,w,t}}\right) = \\ \beta_{Ci} * 1[s_{t} = correct] * log \left(\frac{P(correct|score_{j})_{i,w,t}}{P(correct|score_{k})_{i,w,t}}\right) \\ \text{LLR if signal in } t \text{ incorrect} \\ + \beta_{li} * 1[s_{t} = incorrect] * log \left(\frac{P(incorrect|score_{j})_{i,w,t}}{P(incorrect|score_{k})_{i,w,t}}\right) \\ \log prior \text{ odds} \\ + \delta_{i} * log \left(\frac{P(score_{i})_{i,w,t-1}}{P(score_{k})_{i,w,t-1}}\right) + \eta_{i,w,t}$$

- ▶ In round 1, log prior odds exogenously set to 0.
- ▶ In round 2 and 3, use lagged reported posterior.

Endogeneity

▶ Say that we just run the population regression:

$$\begin{split} \log \left(\frac{P(score_{j}|signal)_{i,w,t}}{P(score_{k}|signal)_{i,w,t}} \right) = \\ \beta_{C} * 1[s_{t} = correct] * log \left(\frac{P(correct|score_{j})_{i,w,t}}{P(correct|score_{k})_{i,w,t}} \right) \\ + \beta_{I} * 1[s_{t} = incorrect] * log \left(\frac{P(incorrect|score_{k})_{i,w,t}}{P(incorrect|score_{k})_{i,w,t}} \right) \\ + \delta * log \left(\frac{P(score_{j})_{i,w,t-1}}{P(score_{k})_{i,w,t-1}} \right) + \epsilon_{i,w,t} \end{split}$$

- In this case, $\epsilon_{i,w,t}$ contains δ_i , β_{Ci} , β_{li} .
- In rounds 2 and 3 about a worker, δ_i , β_{Ci} , β_{li} will not be randomly assigned with respect to the prior: this is because use lagged posterior, which itself contains δ_i , β_{Ci} , β_{li} .
- ightharpoonup Means $E[\epsilon_{i,w,t}|\mathbf{X}] \neq 0$.

Appendix

Figures

Effect of *Same* treatmen

Effect of Different treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Other

Individual vs same treatment.

	(1)	(2)	(3)
	log P(L)/P(M)	log P(M)/P(H)	log P(L)/P(H)
log prior	0.855***	0.785***	0.869***
	(0.052)	(0.051)	(0.046)
LLR correct	1.052	0.447***	0.834**
	(0.088)	(0.095)	(0.071)
LLR incorrect	0.941	1.149	1.034
	(0.127)	(0.100)	(0.094)
$log\;prior\;odds\;\times\;Same$	-0.164**	-0.042	-0.153*
	(0.072)	(0.073)	(0.082)
LLR correct \times Same	0.056	0.433*	0.176
	(0.117)	(0.230)	(0.123)
LLR incorrect \times Same	0.130	-0.168	-0.015
	(0.238)	(0.166)	(0.163)
$\begin{aligned} & Prior + prior \times Same = 1 \\ & Correct + correct \times Same = 1 \\ & Incorrect + incorrect \times Same = 1 \end{aligned}$	0.692***	0.742***	0.716***
	1.108	0.880	1.010
	1.071	0.981	1.019
Observations	1910	1893	1883

Same vs different: partner from high ability.

	(1)	(2)	(3)
	log P(L)/P(M)	log P(M)/P(H)	log P(L)/P(H)
	0.000***	0.020***	0.706**
log prior	0.689*** (0.057)	0.832*** (0.062)	0.706** (0.115)
LLR correct	1.108	0.771	0.962
	(0.130)	(0.258)	(0.163)
LLR incorrect	0.494*	0.745	0.655*
	(0.286)	(0.197)	(0.191)
log prior odds \times Diff: partner from high	-0.011	-0.264**	-0.013
	(0.081)	(0.101)	(0.133)
LLR correct \times Diff: partner from high	-0.047	-0.043	0.011
	(0.171)	(0.299)	(0.186)
LLR incorrect × Diff: partner from high	0.527	0.231	0.323
	(0.331)	(0.227)	(0.220)
$Prior + prior \times Diff = 1$	0.678***	0.568***	0.693***
$Correct + correct \times Diff = 1$	1.062	0.728*	0.973
$Incorrect + incorrect \times Diff = 1$	1.021	0.976	0.977
Observations	952	944	939

Same vs different: partner from medium ability

	(1)	(2)	(3)
	log P(L)/P(M)	log P(M)/P(H)	log P(L)/P(H)
log prior	0.657***	0.661***	0.698***
	(0.078)	(0.068)	(0.084)
LLR correct	1.106	0.944	1.054
	(0.082)	(0.321)	(0.129)
LLR incorrect	1.653***	1.241*	1.389**
	(0.224)	(0.142)	(0.148)
log prior odds \times Diff: partner from med	-0.181*	-0.120	-0.084
	(0.097)	(0.144)	(0.108)
LLR correct \times Diff: partner from med	-0.273**	-0.422	-0.350**
	(0.120)	(0.429)	(0.173)
LLR incorrect \times Diff: partner from med	-0.585**	-0.251	-0.403**
	(0.281)	(0.197)	(0.195)
$\begin{aligned} & Prior + prior \times Diff = 1 \\ & Correct + correct \times Diff = 1 \\ & Incorrect + incorrect \times Diff = 1 \end{aligned}$	0.477***	0.541***	0.614***
	0.833*	0.521*	0.704**
	1.068	0.989	0.986
Observations	955	940	940

Appendix

Figures

Effect of *Same* treatmen

Effect of *Different* treatment

Effect of signal order

Endogeneity

OLS estimates of log-linear updating rule

Other

$$\left(\frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix}s_{it}^{2} & s_{it}p_{it} \\ s_{it}p_{it} & p_{it}^{2}\end{bmatrix}\right)^{-1} \times \frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix}s_{it} \\ p_{it}\end{bmatrix}\begin{bmatrix}s_{it} & p_{it}\end{bmatrix}\frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix}\beta_{i}+\beta_{t} \\ \delta_{i}+\delta_{t}\end{bmatrix}$$

$$\left(\frac{1}{NT}\sum\sum\left[\begin{matrix}s_{it}^2 & s_{it}p_{it}\\ s_{it}p_{it} & p_{it}^2\end{matrix}\right]\right)^{-1}\times\frac{1}{NT}\sum\sum\left[\begin{matrix}s_{it}\\ p_{it}\end{matrix}\right]\left[\begin{matrix}s_{it} & p_{it}\end{matrix}\right]\left[\begin{matrix}\beta_i+\beta_t\\ \delta_i+\delta_t\end{matrix}\right]\neq$$

 $\left(\frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix}s_{it}^{2} & s_{it}p_{it}\\s_{it}p_{it} & p_{it}^{2}\end{bmatrix}\right)^{-1}\times\frac{1}{NT}\sum_{t}\sum_{t}\begin{bmatrix}s_{it} & p_{it}\end{bmatrix}y_{it}=$

IV doesn't fix it

$$\left(\frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix} s_{it}^{2} & s_{it}piv_{it} \\ s_{it}piv_{it} & piv_{it}^{2} \end{bmatrix}\right)^{-1} \times \frac{1}{NT}\sum_{i}\sum_{t}\begin{bmatrix} s_{it} \\ piv_{it} \end{bmatrix}\begin{bmatrix} s_{it} & p_{it} \end{bmatrix}\begin{bmatrix} \beta_{i}+\beta_{t} \\ \delta_{i}+\delta_{t} \end{bmatrix}$$

This is true whether piv_{it} comes from instrumenting with Bayesian belief, or instrumenting i's prior today with i's belief in t-1.

▶ Back

Related literature

- ► Large literature on inferential biases (Benjamin, 2019)
- Most relevant are lab experiments on learning about others' ability:
 - ► Are prior beliefs correct? (Bohren et. al, 2022; Bordalo et al., 2019)
 - ▶ Do people learn about groups over time? (Le Page, 2022)
 - Do people make errors in combining individual-level and group info? (Esponda et al., 2022; Mengel and Campos Mercade, 2022)

Example ASVAB questions

Math

		ny 15 passenger vans will it take to drive al pers of the football team to the stadium?
]	2	
]	3	
]	4	
]	5	
		Verbal
		Banal most nearly means
		□ commonplace
		□ forceful
		□ tranquil
		□ indifferent
		Science
		hen water is taken apart by electricity, nat two substances are formed?
		Carbon and oxygen
		Hydrogen and oxygen
		Oxygen and nitrogen
	П	Hydrogen and nitrogen

